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1. Introduction

Statistical techniques as a rule require that some sort

of randomization has been used in obtaining data. It is

generally assumed that the design of experiment or design of

a survey resulting in the data did use some available method

of randomization. Most of the statistical procedures have

been developed on the assumption that the available data

arose from certain uses of the principle of randomness.

However, in statistical practice, very little attention is

paid to confirming this basic assumption of randomness in

data analysis. There may be possibilities of grave errors

in assuming the randomness of a given set of data while it

i may have occurred from a known or an unknown type of bias.

In simulation studies, extensive use is made of random

numbers generated from computers. Many theoretical studies

~in modern science depend heavily on the generation of random

i" " numbers or pseudo-random numbers. In the present state

p4

= + lotteries and daily number games, ran~dom numbers
are produced in millions. Highly sophisticated routines

have been developed to test generation of such numbers. The

eusers, as a rule, do not test the randomness of numbers as

- generated by well known computer packages though important

uses of such random numbers are made in real problems.

There are several situations in problems of sciences
and industry where data are generated in series. Examples

...... jAvail and/or

Di~t

++ ++- ... ,of randomization... Most of the.. statistica procedure have



of time series data abound in problems in economics, geology,

medicine, climatology, energy, etc. and judicious application

of statistical time series requires answers to questions of

randomness.

Randomness implies different meanings in different con-

texts. Usually a random sample from a population inecns that

we have observed a set of identically and independently

distributed random variables from a population with a specified

probability model- Sir Ronald A. Fisher made a major contri-

bution to scientific experimentation by introducing the con-

cept of randomization at the stage of design. Fisher developed

tests for the sample resulting from randomization process and

recommended alternative strategies.

When randomization leads to a bad looking experiment or

sample, Fisher said that the experimenter should, with discretion

and judgement, put the sample aside and draw another, Savage

(1976).

Importance of testing for randomness in statistical

practice is not recognized in spite of warnings of statisticians.

In a recent paper, Federer (1978) noted that "many statisticians

and teachers of statistics, assume, but do not verify, that

they have a random sample from a prescribed population."

The literature on randomness is extensive and scattered

over many disciplines. Th& list of references includes many

such studies. In this paper a brief account is given of

commonly used tests Qf randomness for samples,



for generated random numbers, for time series and for discrele
I

- 1, random events. An example from. coal mining disasters in

England, recently discussed by Jarrett (1979) is studied

in detail and the data is subjected to analysis. Random

numbers obtained from lottery games in Ohio are used to

illustrate some other tests.

2. Hypothesis of Randomness

A common formulation of the hypothesis of randomness

is in terms of identically and independently distributed

observations from an unknown distribution function, Given

that XI, X 2, ... , Xn is a sample from a population having

the cumulative distribution function F(x), the hypothesis

of randomness is stated in the following manner.

1 H 0 : XI , X2 , .- 11 Xn are independently and identically

distributed with probability distribution function F(x) versus

the alternative hypothesis that they are not. For convenience,

A I a further assumption is made about the continuity of F(x) so

that its density function f(x) exists. The test statistic is

highly dependent on the form of the alternative. Suppose the

alternative is

K: X 1 , X2 , ... , Xn are distributed independently

with distributions F1 (x), F2 (x), ... , FN(x)

3 respectively.

The most powerful test of H0 in the Neyman-Pearson set up,

is a test based on the sample ranks such that it provides

|U
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a critical region of given size a. Except in simple cases,

the distribution theory of the test statistic cannot be

obtained explicitly and the test is of limited use.

Theorem 6.A of Hajek (1969) which is essentially a

reformulation of Neyman-Pearscn lemma, provides the main

result.

There are, however, many useful nonparametric tests

which test the hypothesis of randomness, against alternatives

which are in terms of two samples. Suppose now that the

alternative is given by

H2 : X1, X2 , ... , Xm is independently and identically

distributed as Fl(X) and Xis
E1( Xr+1l.., XN i

distributed independently and identically as

F 2 x).

A special case of the alternative hypothesis is obtained

if F and F2 differ in location or scale. Several of these

situations are discussed by H~j~k resulting in many

classical nonparametric tests.

3. Tests for Random Numbers

There is a large variety of tests available for

testing whether the given set of digits are independently

uniformly distributed. This is what is ordizarily meant

by the word "random" in the generation of random numbers.

Knuth (1968) has provided a long list for such tests.

Ii
9 .



Usually a generator is not regarded as good random number

generator unless it passes at least half a dozen tests of

randomness. The reason is that "randomness" has various

"attributes". The alternative hypotheses to that of

testing the null hypothesis that Xi's are independentlv ani

identically uniformly distributed,are too many. We shall

formulate these alternative hypotheses in the following

and give the tests which are commonly used in practice.

Many of the following tests are found in Knuth (1968).

(i) Chi-squared test

H0 : The digits are distributed

independently and identically with equal

probability of being 0, 1, ... , 9.

H1: They are not.

The usual statistic

counts the observed numbers of digits 0, 1, 2, ... , 9 in the

sample and compares these frequencies with the expected

frequency for the sample. For a large sample of the digits,

this statistic has a X -distribution. Power studies of this

test are available in the literature.

(ii) Equidistribution test. This can be performed by using

Kolmogorov-Smirnov statistic to test uniformity of the

real valued sequence so generated. The discrete form of

1 Kolmogorov-Smirnov is applied if the numbers are rounded

off to integers.

I
I
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(iii) Serial test. It uses Chi-squared statistic to compare

adjacent pairs or triples of numbers. Good (1957) has

discussed the distribution of Chi-squared statistic if both

equidistribution test and serial test are used on the

same data.

(iv) Ga est. Two numbers, a, $ are chosen so that the

length of runs of the numbers between a, B is used as a

statistic. If p = $-a, the test of goodness-of-fit is

used to compare the observed values with the expected

values D, p(l-p), p(1-p)2 ... , p(]-p)t, when the number of

possible runs is t+l.

(v) Poker list: Using any set of five successive integers,

the frequency of various combinations, as found in the game

of poker, are used to test goodness-of-fit. Under the

hypothesis of randomness these probabilities are given

below.

Bust (a b c d e) = .3024

Pair (a a b c d) = .5040

2 pairs (a a b b c) = .1080

3 of a kind (a a a b c) 0.0720

Full house (a a a b b) = .0090

4 of a kind (a a a a b) = 0.0045

5 of a kind (a a a a a) = .0001

(vi) Coupon coilector's test. The length of sequences are

observed so as to get integers from 0, 1, 2, ... , d-l.

V

- _ _ _ _-
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If P is the probability that r digits are needec.

r C, 1, 2 .... d- , we have

d-1 d-p 1 . (l)v(d-l)(dlv)r-i

dr-I V=O V

r = d, d + I, .,.

(vii) Permutation test. The sequence is divided inito n

groups of t elements. The number of times each ordering

appears is counted. A Chi-squared test is utilizeG, since

the probability of a given ordering is 1/(t!).

(viii) Runs test The statistic used is the number of runs

up or down. By a run is meant the length of increasing

(or decreasing) sequences of integers. The distribution

of runs of various length is well known and is given in

recent text books.

(ix) Maximum of t. For the given sequence cf random

numbers UI, U), ... , Us, consider subsequences of length t. Let

V.: max (Uj, U . ... , I)r
j 1,l

for j = 1, 2 ... , n. Using V o l VI  V as then-I

observations from F(x) = xt  0 < x < 1 we

have the usual Kolmogorov-Smirnov statistic for testing
ra-domness

_ (ix) Serial correlation test. The test uses the

statistic which computes the serial correlation for the

generated numbers. If the hypothesis of randomness is

l1

i.!i



M-! M-R
a.

to be rejected, the sample serial correlation should be

large.

4. Randomness of Series of Events

In a given series of events such as coal mining

accidents, computer failures,occurrence of prizes in a

lottery or arrival of a cancer patient at a clinic,

interest may center around the randomness of these events.

Cox and Lewis (1966) have given several applications where

problems of randomness of series of events are discussed.

We consider first the case of binary events.

In a recent paper, Larsen et. al (1973) have stidied

the hypothesis of randomness of binary events with the

alternative of unimodal clustering. Assume that a sequence

of n Bernoulli trials with m successes has the order of

ith success given by yi with

1 < y 1 
< Y2 < ... < YM < n,

Yi are integers between 1 and n. Let m 2r if m is even

and 2r + 1 if m is odd. Then

m

K1 - lYi - Yrll
izl

is used to study unimodal clustering. The hypothesis of

randomness is rejected when K1 is small. When the data

consists of s such sequr.nces, the statistic K can be

formed by summing K1 for each sequence.

I :
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It is shown by Larsen et al that,

E(K 1 ) = m+l

r(n+l)(n-m)[(m+l)2 - 2r2 -S(m).~~V(K 1

12{2[+] + i},

where [x] largest integer r,,t exceeding x and

6(m) = r-2 when M is odd

= 2r-1, m is even

Approximate tests are constructed using asymptotic

theory for K .s

Other alternatives to randomness are considered by

several authors. For example, O'Brien (1976) studied the

alternative of multiple clustering to randomness in the

case of binary data. It is assumed that in the number of

N trials observed, m are successes and, N-m = n failures

such that m > n.

Let Yi be the number of successes prior to ith failure

but subsequent to (i-l)th failure. Let y be the average

length, y n+ e

n+l
l Y )2

s s2 = i =l

n

The distribution of ns has been tabulated by Dixon (1940) f: r
m

m, n < 10. Dixon also showed that for m;, n > 10, distribution
3

of cs2 is approximately chi-squared with c __2___- U
2To(is+n m

The hypothesis of randomness :s
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rejected when s2 is large or small.

A test of randomness using the coefficient of variation

(CV) where X1. X2  ... , Xn are independently and identically

exponentially distributed was studied by Moran (1951). He

showed that k(CV)2 has Xwhere

k = n/2

V= n/2

approximately. Asymptotically the distribution of (CV) 2

is normal. O'Brien (1976) has given comparison of the

actual Chi-squared statistic and the observed value based

en simulation. This approximation does not seem very good

except for upper percentile points.

5. Tests of Randomness in Spacial Situations.

There are several situations in which random phenomena

occur in space, For example, one may be interested in the

distribution of points on a line or in plane. Related

problems occur in tests using geometrical methods such

as tests of certain hypotheses utilizing graphical techniques.

In the case of multivariate data, several procedures have

been found to be useful for preliminary study of data.

Some of the early tests of randomness for points on a

line can be transformed to the test of hypothesis of

independent and identically distributed uniform random I
variables. Pearson (1963) has given comparisons of four

Fil
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tests based on Kolmogorov-Smirnov and von Mises statistics *

and their standardized forms.

In two-dimensions, several models have been discussed

by authors to derive tests for the randomness of points in

a plane.

Brown and Rothery (1978) have discussed the hypothesis

of randomness of points in a plane formulated as the points

forming a two-dimensional Poisson point process. They have

proposed two statistics which are sensitive to the alternative

hypothesis of local regularity. One is the squared coefficient

of variation of squared nearest neighbor distances and the

other is the ratio of the geometric mean to the arithmetic

mean of the squared distances. Distribution of these statistics

are given with the help of computer si.ulations and numerical

approximations.

Let n points be distributed in a given region. Suppose

v 1V' v2 , .. ' vn are the squared distances to the nearest

neighbor of a randomly selected individual.

Let

D n

(n-l)D
2

1/n
G 1 vv 2 , Vn)

D

I I-W- -,,
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Tests based on S and G reject the hypothesis of randomness

if S is small or G is large.

In the case of points in an infinite plane, -2 log G

is a special case of Bartlett's statistic and has been

extensively studied, see for example, Glaser (1976).

However, for finite planes for various shapes and sizes

simulations have to be used. Brown and Rothery (1978) have

obtained the values for estimated probabilities in the

upper tails of the distribution of G and lower tails of

the distribution of S based on 1500 realization for the

circle, 2000 realizations for the square and 1200 realizations

for various rectangle sizes as given in Tables I and II, for

sample sizes of 25 and 36. Recently a survey of tests

of randomness for spatial joint patterns has been given by

Ripley(1 9 79). The asymptotic distribution theory and power

of tests based on the nearest-neighbor distances and

estimates of the variance function are investigated in

this study.

6. Tests of Randomness for Time Series Data

When the data in an experiment arises in a sequence,

the natural question arises about dependence of observations.

Ths usual alternatives to randomness in time series are

those of trend and periodicity. Kendall and Stuart (1968)

give several tests for randomness in time series. Commonly

S---- -.---



Table

Estimated probabilities of G exceeding upper

5% and 2.5% point

n = 25 n 36

Shape a =0.05 a = 0.025 a = 0.05 a =0.025

Circle 0.066 0.038 0.085 0.0'49

Square 0.075 0.0412 0.067 0.0415

1x2 rectangle 0.063 0.0341 0.063 0.039

lx~4 rectangle 0.073 0.0416 0.060 0.036

1x8 rectangle 0.055 0.038 0.0411 0.023

lxlB rectangle 0.024 0.015 0.038 0.021

1x32 rectangle 0.009 0.007 0.012 0.007
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Table II

Estimated probabilities of S falling below

5% and 2.5% points

n = 25 n = 36

Shape L =.05 a = .025 c = .05 a = 0.025

Circle 0.048 0.028 0.048 0.032

Square 0.046 0.031 0.042 0.029

ix2 rectangle 0.041 0.025 0.042 0.027

ix4 rectangle 0.046 0.033 0.036 0.023

ix8 rectangle 0.036 0.025 0.032 0.013

ix16 rectangle 0.022 0.013 0.028 0.018

Ix32 rectangle 0.005 0.003 0.007 0.003

rI
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U a used tests are the turning points test, run test, rank

correlation test and difference-sign test. For example,

the turning points test is performed as follows. Let

u- , u 2 , ... , u. be the time series.

Let p be the number of turning points of this series.

It can be shown that mean and variance of p are given by

2(n-2)E (p) =--T -

and
2 16n-29
p go

under the assumption of randomness. Using normal approximation,

the test is usually performed. The rank correlation test is

performed as follows.

Let P be the number of pairs where u. > ui, j > i for

i, j = 1, 2, ... , n. Then E(P) = n(n-1) if Q is the4 is

number of pairs such that uj < ui, j > i, then Kendall's T's

T = i 0

It is well known that

E(T) 0

and

V(T) - 2(2n + 5)
9n(n-l)

and has approximately normal distribution which is then

used to test the hypothesis of randomness. The details

of these tests are available in Kendall and Stuart (1976).
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7. Randomness of Treatment Allocation in Experiments

To verify the claim that the treatments were assigned

at random in an experiment, often tests using randomization

test or permutation test are utilized. To perform the

permutation test, the fact that the conditional distribution

of any arrangement of the ordered observations given the

values of the ordered statistics is uniform, can be utilized.

In such a case, an appropriate test statistic is chosen and

the value of this statistic is calculated for each arrangement.

The hypothesis tested is that there is no difference among

the treatments assigned at random to experimental units. The

hypothesis is rejected for an! arrangements which give the

most extreme test statistic. Here a is the level of the test

and n is the number of observations. Since the critical

region depends on the sample values of the ordered statistics,

unlike the usual case, the critical region can only be obtained

after the sample has been observed. Since such computations

are laborious these tests are not usually carried out. Details

of these tests are given by Hajek (1969).

8. Miscellaneous Tests

i) Test of Randomness of Several Rankings

When several judges rank the same items, one is interested

in the test of randomness of these ranking. Usually this can

be tested by Friedman Statistic. Let there be I items and R.
1

be the sum of m ranks assigned to item i, i r 1, 2, . ... , I.

t°I



Friedman's statistic is given by

X 12 P, 2 - 3m (1+l)

For large m and 1, Friedman's statistics is distributed as

Chi-squared with I-I degrees of freedom asymptotically.

(ii) Tests for multivariate normality

Andrews (1972) nas proposed tests for assessing multi-

va~riate normality for p-dimensional data. Suppose the data

are transformed so as to have zero means and identity

covariance matrix. Then using the probability transform

we have points in a hypercube. The nearest distance statistic

is given by

d(X., X) maximin[fxk -X

11, IIjki - Xk jI

Volume of the set enclosed by a distance d from the point

V(d) =(2d)P

Since X. .. ', X are uniformly distributed,V~d) has

axponential distribution, with a parameter, say A. Then the

conditional probability of V(d) < V(d) given that d~ <,d 0 is

p(d 1-

Let

Wi t'(p(d1))

I I11
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If wi are calculated from disjointed parts of the unit

hypercube, they should not show any dependence on the center,

x. of the part of the cube. This dependence may be tested by

using quadratic regression of wi on xi . The regression sum

of squares has a Chi-squared distribution with (p+l)(p+2)/2
degrees of freedom. For further details, the reader is referred

to Gnanadesikan (1977, p. 169) wherein other relevant tests are

also given,

Graphical tests, as generalizations of univariate plots on

probability paper to assess univariate normality, are based on

radii and angles.

Let
1 -/2( -Z

Z. - (.v
rL. I X

2 z ' Z i

%' x2 approximately

Plot yi2,i = 1, 2, ..., n ordered in magnitude against the

quantile of a X2 distribution corresponding to a cumulative

probability of

*1
1--

2i
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Let 0i angle which Zi makes with the abscissa-axis

in bivariate normal case. Plot of . against nf

there is bivariate normality in data, both of these plots

should be linear. In the case of p-dimensions, there would

be p-i angles. For one of the angles, a probability plot

is still appropriate since it is still uniformly distributed

on (0, 2"i). For the remaining (p-2) angles, the distributions

are proportional to (sin 0Q)P - l- j  0 < 6. < 7, j = 1, 2,

p-2. For these angles, the appropriate plots are obtained

by plotting n ordered values against n quantiles of this

distribution.

(iii) Tests of randomness using stochastic processes

Liebetrau (1979) has studied some statistics utilized

in tests of randomness based on the variance-time curve of the

Poisson process. Consider the following notation.

{T.} = real weakly stationary point process,

N(A) the number of {T.} in A for Borel set A,

The mean and variance of N(A) are given by,

M(A) = ENA)),

V(A) = E[N(A) - M(A)]2

When A is an interval x, x + t), the mean and variance of the

process are denoted by

M(A) = M{(x, x+t)} = M(t),

V(A) V(t).

Suppose TI, T2 , ... , T have .een observed in (0, T). V(t) is1 2 n

estimated by

V(t) [(Nx, x+t) -

0 -
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If {T. is a Poisson process with rate Vi and V(u) n

then Liebetrau (1976) showed that

n y(t) T T%(tT-) V- t'

22

K(t,u) z- P 2(3tlU-t3 ), 0 <t < U < 1. Similarly

^C i/2 -C
flm(t) = T 2 [V(tc) - V~tc)] converges weakly as T -~to n

which is Gaussian with covariance

K C(t, u) =C*3K(t,u)

Tests of randomness are based on

1JnC(t)dt

0
Upper percentage points are given for C by Liebetrau (1979,

r p. 38).

9. Application

Tests of randomness are routinely applied in many areas

of science and engineering. A few recent examples from

lottery games are discussed and examples are given from

evolutionary paleontology and mining disasters.
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8.1 Evolutionary Paleontology

Several tests of randomness have been applied in

studying the pattern of evolution in the fossil record which

is basic to the study of evolutionary paleontology. The model of

progressive specialization through the phanerozoic is studied

using taxonomic and morphological evidence. In a recent

paper, Flessa and Levinton (1975) have used tests of goodness

of fit of the Poisson distribution and also the run test for

studying randomness. Using data obtained from patterns of

origination within taxa and patterns of dominance diversity,

they have distinguished random and non-random components.

8.2 Mining Disasters

Jarrett (1979) has given a revised table of time

intervals in days between explosions in mines in England

during 1851 - 1962. These data were originally given by

Maguire, Pearson and Wynn (1952). Table 1 of Jarrett (1979)

is reproduced here as Table III. One of the earliest problems

studied for the data, has been the test of hypothesis of the

randomiess of the occurrence of coal mining disasters.

Assuming that the mining disasters occur at random,

t o the time interval between them has a Gamma distribution.

Since the data given are in terms of these time intervals,

- the test of randomness is carried through the test of goodness

of fit of the Gamma distribution.

f l u............. .
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Table III

Time intervals in days between explosions in mines, from
March 15, 1851 to March 22, 1962 (to be read down columns)

157 65 53 93 127 176 22 1205 1643 312123 186 17 24 218 55 61 644 54 5362 23 538 91 2 93 78 467 326 145124 92 187 143 0 59 99 871 1312 75
12 197 34 16 378 315 326 48 348 3644 431 101 27 36 59 275 123 745 3710 16 41 144 15 61 54 456 217 19

216 154 139 45 31 1 217 498 120 15680 95 42 6 215 13 113 49 275 47
12 25 1 208 11 189 32 131 20 12933 19 250 29 137 345 388 182 66 1630r6 78 80 112 4 20 151 255 292 29

232 202 3 43 15 81 361 194 4 217826 36 324 193 72 286 312 224 368 740 110 56 134 96 114 354 566 307 18
J2 276 31 420 124 108 307 462 336 135829 16 96 95 50 188 275 228 19 2366

190 88 70 125 120 233 78 806 329 95297 225 41 34 203 28 17 517 330 632

li LlIM
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Using the density of the Gamma as

T-rT-& Bae , x > 0

f(x)
0 elsewhere,

the maximum likelihood estimates of a and 8 are obtained by

solving the following equations

log a - log X- (log X)
r(a)

Omitting 0 as an observation, we use n = 189 observations

with 2 = 213.53, log X = 4.556, we use tables of Pearson and

Hartley (1966) to obtain

a= 0.7384

and = 290.53

Using Kolmogorov-Smirnov statistic, we accept the

hypothesis at .05 level of significance.

9.3 Occurrence of Prizes in a State Lottery Game

, 'In legalized lottery games, presently being played in

many states in American and various countries throughoutithe world, the games are designed in such a way that the
prizes occur at random with preassigned probab~lities. One

of the main problems in these games is to keep control of

the integrity and honesty of the game. When several persons

receive prizes in the same locality or several prizes occur

II
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within a short interval of time during the progress of the

game, the process of randomness is likely to be challenged.

Most often, tests of randomness are performed to check whether

the prize structure in the game is random. Consider the

situation that the probability of getting a prize is 0.01.

Then the hypothesis of randomness means that in the independent

trials resulting in losers and winners, the winners occur

with probability 0.01. The test statistic in this case can

be obtained from goodness of fit test for the geometric

distribution with probability p = 0.01. The data given in

the following were obtained from a game designed for a state

lottery. The frequency distribution of the number of winning

tickets in a given sequence of 1500 tickets generated, is given

in Table IV. The number of losers between successive winners

is called waiting time. Table V provides the list of 180

waiting times for certain large tier prizes in another state

lottery game. The test for randomness in this case is the usual

Chi-squared tcst for goodness of fit. The Chi-squared statistic

is 4.98 in this case and the comparison is made with the

tabulated Chi-sonared value of 9.2 with 5 degrees o fnee-om

atl0% level of significance. Hence we say that the prizes occur

at r'andom.

It can be seen from the following straightforward

argument that the geometric distribution is the discrete

analog of the exponential distribution. Consider the



Table TV 

2

Frequency of occurrence of prizes

Number of Observed frequency Expected frequency

winning tickets

1 51 5~4

2 40 43

3 27 35

6-7 37 32

8-11 35 34

12 or more 32 25

273 273
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Table V

Waiting times for high tier denomination prizes in a state
lottery game (given in multiples of 300 and arranged in
increasing order in every column.

33 5 1 6 13 20 4 5 5 8
35 15 7 24 32 21 7 6 15 18
47 18 9 28 34 43 17 25 17 22 I
49 29 26 29 43 43 24 29 27 26
60 29 40 42 47 62 37 38 57 47
63 38 42 45 65 68 42 40 68 52
72 55 50 55 66 75 60 46 70 59
77 58 55 68 71 75 79 60 89 84
86 77 72 70 74 77 80 63 106 88
91 92 93 77 80 80 88 70 108 121

106 112 94 81 94 89 96 79 113 137
120 120 105 87 98 115 102 94 113 140
126 122 119 109 130 116 156 118 117 141
132 172 153 119 134 155 189 129 147 143
154 195 164 190 163 162 206 134 148 162
160 3.95 166 232 163 219 210 151 212 198
235 253 282 266 191 227 219 259 219 216
274 335 442 392 422 273 307 574 289 258

x 106.67 n 180

I

L4
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exponential distribution with parameter X. The discretized

probability between [X] - 1 and [X] is
I

f Xe-dt e-X[x] X[l-e-e]
[x].-1l

Let p -e -  then we have for [x] = y a positive integer,

- p(l-p)y- I which is the geometric distribution.

We test the hypothesis that the waiting times are

exponentially distributed since the continuous analog of the

geometric distribution is the exponential distribution. The

frequency distribution is given in Table VI for the waiting

times in Table V. The Chi-squared value for the table

under the exponential model is 6.68 and we again accept

the hypothesis of randomness at 10 percent level of significance

as the tabulated Chi-squared value is 7.78 for 4 degrees of

freedom.

9.4 Randomness of Digits in a Daily Lottery Numbers Game

The tests of randomness for numbers generated for

lottery games as well as for awarding prizes are made in

the same manner. Consider the following sequence of three-

digit random numbers in a state lottery "Number Game" for

100 drawings as given in Table VII. To obtain the frequency

test for the random digits we form the Table VIII giving the

distribution of 300 digits in 100 numbers. Testing for

uniformity provides the confirmation of the hypothesis of

randomness atlD percent level of significance.
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Table VI

Frequency distribution of waiting times

Interval Observed frequency Expected frequency

0- 60 64 77

61 - 120 59 45

121 - 180 27 29

181 - 240 16 12

241 - 300 8 10

301 or more 6 7

180 180
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Table VII

Drawings in a number game in a state lottery

308 967 521 492 407
646 514 559 458 145
554 991 751 259 730
804 657 432 972 407
098 109 98b 261 748
130 743 551 167 682
037 691 717 002 688
709 146 544 70r 909
089 503 163 7 SJ 710
613 340 081 114 036

876 758 972 580 738
519 123 568 854 760
810 351 742 392 810
892 983 988 415 460
392 623 533 743 454
726 190 714 750 407
516 95] 024 253 107
953 080 035 988 798
969 547 158 472 216

II
"I'i



Table VIII

Frequency distribution of digits

digit frequency expected

0 34 30
1 32 30
2 21 30
3 25 30

429 30
5 33 30
6 22 30
7 314 30
8 30 30
9 30 30

300 300

X2 = 7. 20

x2 0.9 14.68 with 9 degrees of freedom
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